Upcoming Events

(For Past Events Please See Bottom)


20 October 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.13)

Speaker: Dr. Alper Sinan Akyürek, ASELSAN

Topic: “Optimal Control in the Smart City”

Location: Middle East Technical University, Ankara, Turkey

Abstract: Once a dream, currently a massive reality; the Internet of Things is here, and it is growing. In such a massive connected   environment, developing scalable, dynamic and adaptive engineering solutions is of utmost importance. With recent advancements in  communication and computation, the IoT space contains a multitude of  heterogeneous connected nodes with various sensing and computational  capabilities. The current design paradigm must be adjusted to leverage  the current distributed computing capabilities, while adhering to the  constraint of scalability. This talk presents an optimal framework for  a specific IoT space from the energy perspective: The Smart City. The  framework contains four components. At the core lies a novel, scalable  and distributed middleware consisting of small computational engines  called the “context engines”. The context engines leverage a novel model generation algorithm capable of generating analytic models with  adjustable accuracy. A novel communication control algorithm provides  an optimal flexible solution for interconnectivity. The whole system  is then used by a novel optimal distributed nonlinear energy control  algorithm. Although the solutions are designed for the smart city  environment, the core concepts  are general enough to be applied to  the other IoT spaces.

Bio: Alper Sinan Akyurek is currently a Senior Software and Design  Engineer at Aselsan Inc. His current work involves the design of  custom, robust, wireless solutions for military applications at multiple layers and the implementation of these solutions on embedded platforms. Dr. Akyurek finished his Ph.D. in Electrical and Computer Engineering at the University of California, San Diego, and obtained  his M.Sc. and B.Sc. degrees in Electrical and Electronics Engineering  at Middle East Technical University in 2017, 2011 and 2008,  respectively. After his Ph.D. he continued his work as a PostDoc at  UCSD, and before, he was working at his current company. He currently  has 20 publications and 3 patents.

27 October 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.14)

Speaker: Asst. Prof. Emine Ülkü Sarıtaş, Bilkent University

03 November 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.15)

Speaker: Prof. Oğuz Gülseren, Bilkent University

17 November 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.16)

Speaker: Assoc. Prof. Özgür Özdemir, Istanbul Technical University

24 November 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.17)

Speakers: TAMSAT

Topic: “Details of a Low Earth Orbiting (LEO) Cubesat’s Subsystems

01 December 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.18)

Speaker: Assoc. Prof. Özlem Özgün, Hacettepe University

08 December 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.19)

Speaker: Assoc. Prof. Mehmet Ünlü, Yıldırım Beyazıt University

15 December 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.20)

Speaker: Prof. Ergin Atalar, Bilkent University

22 December 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.21)

Speaker: Prof. Gönül Turhan Sayan, Middle East Technical University


29 December 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.22)

Speaker: Asst. Prof. Selçuk Yerci, Middle East Technical University

05 January 2018 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.23)

Speaker: Prof. Ekmel Özbay, Bilkent University

12 January 2018 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.24)

19 January 2018 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.25)

26 January 2018 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.26)

22 December 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.21)

IEEE-EMC Distinguished Lecturer Seminar by Prof. Andy Marvin

08 March 2018

Topic: “Shielding”

Location:  TBD

Funder:  IEEE Electromagnetic Compatibility Society

IEEE-EMC Distinguished Lecturer Seminar by Prof. Andy Marvin

08 March 2018

Topic: “Shielding Enclosure Metrics”

Location:  TBD

Funder:  IEEE Electromagnetic Compatibility Society

IEEE-APS Distinguished Lecturer Seminar by Prof. Jianming Jin

Expected to be in March-June 2018.

Topic: “Multiphysics Modeling in Computational Electromagnetics: Challenges and Opportunities”

Location:  Middle East Technical University, Ankara, Turkey

Funder:  IEEE Antennas and Propagation Society

IEEE-APS Distinguished Lecturer Seminar by Prof. Jianming Jin

Expected to be in March-June 2018.

Topic: “The Fascinating World of Computational Electromagnetics”

Location:  Bilkent University, Ankara, Turkey

Funder:  IEEE Antennas and Propagation Society



24-27 September 2017: Fourth International EMC Conference (Attendance)


24 September 2017: IEEE-APS Distinguished Lecturer Short Course by Dr. Sudhakar Rao

Topic:  “Advanced Antenna Systems for 21st Century Satellite Communication Payloads”

Location:  Middle East Technical University, Ankara, Turkey

Funder:  IEEE Antennas and Propagation Society


26 May 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.12)

Speaker: Assoc. Prof. Alpan Bek, Middle East Technical University

Topic: “High Resolution Optical Microscopy and Spectroscopy Techniques in Biology”

Location: Middle East Technical University, Ankara, Turkey

Abstract:  High resolution optical microscopy and spectroscopy used to be limited in the micrometer spatial resolution for about 3 centuries after development of the first microscopes in 17th century. The limiting factor behind such a long time of further advancement has ultimately  been the diffraction limit of visible light. It was in late 20th century when technology has finally advanced beyond the limitation of diffraction to enable optical spatial resolution down to the nanometer. Nanometer dimension is the realm of large molecules of which maybe most interesting ones such as proteins are of biological origin. In this talk I will present the ideas behind breaking the diffraction limit and give an overview of several high resolution imaging and spectroscopy techniques in biological specimen analysis.

Bio:  Alpan Bek has completed his BSc and MSc studies at Bilkent University Department of Physics. He has taken part in experimental research on optical properties of low dimensional systems and integrated optics under supervision of Prof. Atilla Aydinli. He has obtained his PhD degree from Ecole Polytechnique Federale de Lausanne (EPFL) while he conducted his PhD work at the Max-Planck Institute for Solid State Research in Stuttgart, Germany under supervision of Prof. Klaus Kern. He has constructed an optical microscope that can resolve structures down to 5 nm with visible light. He has had a post-doctoral stay at Ludwig Maximillian’s University of Munich (LMU) in the group of Prof. Jochen Feldmann and conducted research together with Prof. Thomas Klar on plasmonic systems. Afterwards he has moved to Cluster in Biomedicine (CBM) in Trieste, Italy to work together with Dr. Marco Lazzarino on tip enhanced Raman spectroscopy (TERS). In 2011 he has returned back to Turkey as a faculty member in Physics Department of Middle East Technical University. He is currently conducting research in the fields of plasmonic solar cells and nonlinear plasmonics as the leader of the Nano-Optics Research Group and as a member of The Center for Solar Energy Research and Applications (GÜNAM).


12 May 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.11)

Speaker: Prof. Vakur B. Ertürk, Bilkent University

Topic: “Incomplete-Leaf Multilevel Fast Multipole Algorithm for Multiscale Electromagnetics Problems”

Location: Middle East Technical University, Ankara, Turkey

Abstract: Fast Multipole Method (FMM) is selected as one of the 10 algorithms with the greatest influence on the development and practice of science and engineering in the 20th century, and its multilevel version, Multilevel Fast Multipole Algorithm (MLFMA), is currently among the most widely used and powerful methods in computational electromagnetics (CEM) in addition to its use in other fields such as chemistry, biology, and physics applications. However, when scattering from multi-scale (electromagnetic) applications are considered, for instance electrically small and structurally complicated antennas on large platforms, MLFMA may become considerably inefficient or inaccurate originating from the fact that it deploys fixed-size boxes at each and every level of the corresponding tree structure, which is not suited when use of a multi-scale meshing (i.e., highly nonuniform) is inevitable.  

In this talk, we will present our recent work on an efficient and versatile broadband MLFMA, which is capable of handling large multiscale electromagnetic problems with a wide dynamic range of mesh sizes. By invoking a novel concept of incomplete-leaf tree structures, where only the overcrowded boxes are divided into smaller ones for a given population threshold, versatility of using variable-sized boxes is achieved. Consequently, for geometries containing highly overmeshed local regions, the proposed method is always more efficient than the conventional MLFMA for the same accuracy, while it is always more accurate if the efficiency is comparable. Furthermore, in such a population-based clustering scenario, the error is controllable regardless of the number of levels.

Bio: Vakur B. Ertürk received the B.S. degree in electrical engineering from the Middle East Technical University, Ankara, Turkey, in 1993, and the M.S. and Ph.D. degrees from The Ohio-State University (OSU), Columbus, in 1996 and 2000, respectively. He is currently a Professor with the Electrical and Electronics Engineering Department, Bilkent University, Ankara. His research interests include the analysis and design of conformal antennas and arrays, wireless sensors for structural health monitoring, numerical techniques, printed circuits, scattering from and propagation over large terrain profiles. Dr. Ertürk served as the Secretary/Treasurer of the IEEE Turkey Section as well as the Turkey Chapter of the IEEE Antennas and Propagation, Microwave Theory and Techniques, Electron Devices and Electromagnetic Compatibility Societies. He was the recipient of the 2005 URSI Young Scientist and 2007 Turkish Academy of Sciences Distinguished Young Scientist Awards.


5 May 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.10)

Speaker: Assoc. Prof. Hüsnü Emrah Ünalan, Middle East Technical University

Topic: “Transparent Contacts With Metal Nanowire Networks”

Location: Middle East Technical University, Ankara, Turkey

Abstract: Figure of merit transparency and sheet resistance values of the metal nanowire networks are very close, if not better, than those of commercially available transparent and conducting thin films, such as indium tin oxide (ITO). In addition, nanowire networks carry the prominent advantage of solution processability. In this presentation, I will talk about our efforts on the utilization of silver (Ag) and copper (Cu) nanowire networks as transparent contacts for polymeric light emitting diodes, solar cells and transparent heaters. Following their synthesis and purification, nanowires are deposited onto various substrates in the form of networks through spray coating. Surface roughness and long-term stability of the networks are carefully monitored, where the latter is a particularly important problem for Cu nanowires. Infiltration of a conducting polymer decreased the roughness associated with the networks so that they can be used as anodes in polymeric light emitting diodes. In order to eliminate the shading losses associated with conventional screen-printed finger electrodes in single crystalline silicon solar cells, networks were utilized as top contacts. Through the application of a post-deposition treatment for the formation of the ohmic contacts, a relative enhancement in conversion efficiency of 21% was obtained with respect to the reference cells. When used as transparent heaters, reproducible heating characteristics and uniform temperature distribution was obtained from the networks. The effect of nanowire density on the temperature profile, applied voltage as well as turn on/off characteristics were investigated.

Bio: Emrah Unalan received the BS degree in Metallurgical and Materials Engineering from Middle East Technical University, Turkey in 2002 and the MS and PhD degree in Materials Science and Engineering at Rutgers University, USA in 2004 and 2006, respectively. From 2006 to 2008, he was a Research Associate in Electrical Engineering Division in Engineering Department at University of Cambridge, UK. In 2008, he joined Department of Metallurgical and Materials Engineering, Middle East Technical University, where he is currently an Associate Professor. His research interests include synthesis of nanotubes/nanowires and their utilization in flexible, transparent, stretchable and textile integrated electronics and energy harvesting devices. The aim of his research is not only the utilization of nanomaterials for unforeseen applications through the fabrication of novel devices but also seeking possibilities for new device concepts and form factors. He is a member of Materials Research Society (MRS), American Chemical Society (ACS) and a recipient of the Turkish Academy of Sciences Young Scientist Award in 2009, The Scientific and Technological Research Council of Turkey (TUBITAK) Incentive Award in 2014, Science Academy Young Scientist Award in 2015.


2 May 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.9)

Speaker: Prof. Ibrahim Tekin, Sabancı University

Topic: “High Isolation Full Duplex Communication Antennas”

Location: Middle East Technical University, Ankara, Turkey

Abstract: Many technologies are being considered for efficient 5G communication. In-Band Full Duplex (IBFD) is one effective way to increase the spectral efficiency and the throughput of wireless communication systems by transmitting and receiving simultaneously on the same frequency band but the coupling (called Self Interference or SI) of transmit signal to its receiver is one major problem. IBFD operation can be realized successfully by suppressing this coupling or Self Interference (SI). The goal is to achieve high interport isolation for dual port antennas with minimum effect on radiation performance of antennas. In this talk, microstrip patch antennas which deploy different feeding techniques along with Self Interference Cancellation (SIC) circuits to get high interport isolation to enable such antennas for realization of IBFD wireless operation using single/shared antenna architecture will be presented.

Bio: Ibrahim Tekin received the B.S. and M.S. degrees from the Electrical and Electronics Engineering Department, Middle East Technical University, Ankara, Turkey, in 1990 and 1992, respectively, and the Ph.D. degree from The Ohio State University (OSU), Columbus, OH, USA, in 1997. He was with the Electrical Engineering Department, OSU, from 1993 to 1997. From 1997 to 2000,he was a Researcher with the Wireless Technology Laboratory, Bell Laboratories, Lucent Technologies, Murray Hill, NJ, USA. He is currently with the Electronics Engineering Program, Sabanci University, Istanbul, Turkey. He is also involved in various projects, including 77 GHz LNA and antenna design, RFIC design for WLAN systems, and antennas for full duplex systems. He has authored many scientific papers and patents on microwave and antennas area. His current research interests include RF and microwave circuit design and millimeter wave antennas and circuits. Dr. Tekin is a Senior Member of the IEEE Antennas and Propagation Society.


28 April 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.8)

Speaker: Prof. İrşadi Aksun, Koç University (Co-Author: H. Serhat Tetikol)

Topic: “Understanding Surface Plasmon Polaritons (SPP) via Critical Study of Dispersion Relation – Complete Picture and Correct Interpretation”

Location: Middle East Technical University, Ankara, Turkey

Abstract: Dispersion relation for surface plasmon polaritons (SPPs) is a fundamental equation that has long been known. A common misconception in its solution is that either a complex frequency or a complex wave-vector can be used to account for losses in the system. We show that both frequency and wave-vector should simultaneously take complex values in order to fully account for the underlying physics represented by the dispersion relation, resulting in Dispersion Surface. Realizing that the dispersion surface is in fact a manifestation of a richly embroidered set of dispersion lines, which may be accessible by carefully selecting source and material properties, our results pave the way for the possibility of unprecedented engineering of resolution, confinement, group velocity and band-gap in structures supporting SPPs. Our results are also applicable to a larger class of waves in dispersive environments, and pose a major amendment to the conventional interpretation of dispersion. 

Bio: M. İrşadi Aksun, professor of electrical and electronics engineering, is the vice president for research and development at Koç University. Dr. Aksun received his B.S and M.S degrees in Electrical and Electronics Engineering from Middle East Technical University, Turkey, and his Ph.D degree in Electrical and Computer Engineering from University of Illinois at Urbana-Champaign, U.S.A., in 1990. His research interests are: Computational EM and Optics, Antennas and Propagation, Nanophotonics. After completing postdoctoral training at University of Illinois at Urbana-Champaign, he joined the faculty of Electrical and Electronics Engineering at Bilkent University, and worked there until 2001. Then, he joined Koç University in 2001, served as Dean of Faculty of Engineering between 2004-2009, and has been serving in the capacity of Vice President for Research and Development since September 1, 2009. He has received “TÜBİTAK Incentive Award” in 1994, “The Best Professor Award” given annually by Bilkent students in 2001, “TÜBİTAK Science Award” in 2007, and become a principle member of Turkish Academy of Sciences in 2012.


21 April 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.7)

Speaker: Asst. Prof. Rohat Melik, TOBB-ETÜ

Topic: “Modulation of Ion Concentration In-Vivo”

Location: Middle East Technical University, Ankara, Turkey

Abstract: Our motion and behavior are as a result of the change of the cellular membrane potential. Therefore, by controlling the membrane potential in-vivo, we can control our motion and behavior. In our work, we applied extrinsic current and changed the ion concentration gradient in-vivo hence; changed the membrane potential in-vivo. Therefore, we proposed and developed two fundamental technologies: changing ion concentration gradient in-vivo and changing membrane potential in-vivo. We used these fundamental technologies for therapeutics of neurological disorders. Approximately 6 million people are paralysis in US (1.9%). Conventional Functional Electrical Stimulation (FES) aims to restore neurological functions such as standing, ambulation etc. However, there is no widely acceptable FES system because of high-energy expenditure and stimulation of nearby sensory nerves, causing pain. By using our novel electrochemical stimulation and blocking method, we modulated ion concentration around the sciatic nerve of a frog in-vivo using ion-selective membrane (ISM), hence; lowered the stimulation current therefore decreased the energy expenditure. We also lowered the blocking current as a result localized stimulation and reduced pain.

Bio: Dr. Melik is currently an Assistant Professor in the Department of Electrical and Electronics (EE) Engineering at TOBB University of Economics & Technology, Ankara, Turkey. He received B.S. degree in Electrical and Electronics Engineering (major) and in International Economics (minor) from Middle East Technical University (METU), Turkey in 2004. In his Ph.D. study, Dr. Melik has worked on smart orthopaedic implants for early-diagnostics of orthopaedic traumas. In 2010, he received his Ph.D. in Electrical and Electronics Engineering from Bilkent University, Turkey. He worked as a postdoctoral fellow in the Department of Electrical Engineering and Computer Science at Massachusetts Institute of Technology (MIT) in 2011-2012. Since 2013, he continues his career as an academic at TOBB University of Economics & Technology. His research interest is particularly in implantable electronics, which has clinical applications in real life especially for the therapeutics of neurological disorders. He is the recipient of Leopold B. Felsen Award for Excellence in Electromagnetics.


14 April 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.6)

Speaker: Prof. Özlem Aydın Çivi, Middle East Technical University

Topic: “Reconfigurable Reflectarrays: Design, Analysis and Fabrication” 

Location: Middle East Technical University, Ankara, Turkey

Abstract: Reflectarray antennas combine the advantages of both reflector and array antennas. Therefore, they offer low-loss, low-cost solutions for the high gain beam steering and beam shaping applications. In this talk, first the current progress and future perspectives regarding the design and analysis of reflectarrays will be discussed. Then, recent technological developments and techniques that are used to realize reconfigurability in reflectarrays will be presented.

Bio: Özlem Aydın Çivi received BSc, MSc and PhD degrees in 1990, 1992 and 1996 respectively in Electrical and Electronics Eng. Department of the Middle East Technical University (METU) in Ankara, Turkey. In 1997-1998 she was a visiting scientist at the ElectroScience Laboratory, Ohio State University. Since 1998, she has been with the Department of Electrical and Electronics Engineering, Middle East Technical University, where she is currently a Professor. Her research interests include multi-function antenna design, reconfigurable antennas/arrays, RF-MEMS applications, phased arrays and analytical, numerical and hybrid techniques in EMT problems especially fast asymptotic/hybrid techniques for the analysis of large finite periodic structures. She is author or co-author of more than 100 scientific publications. Since 1997, she has been a national delegate of the European Cooperation Actions COST260, COST284, COST-IC0603 on Antennas, and currently participates in COST-VISTA. She also participated in EU’s Network of Excellence on RF MEMS and RF Microsystems. Since 2004, she is a technical reviewer of the European Community for scientific projects in the fields of antennas and communication. Dr. Civi chaired, organized sessions and served in the Technical Program Committees at many International Conferences. In particular, she was actively participated in the organization of 2011 URSI General Assembly, Co-chair of MEMSWAVE2012 and chair of URSI Turkey 2016. She is a Senior Member of IEEE, member of EuRAAP, board member of EuMA Topical Group on RF MEMS, board member of ESoA, and vice chair of URSI Turkish National Committee. She is an Associate Editor of the IEEE Transactions on Antennas and Propagation.


7 April 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.5)

Speaker: Dr. Mehmet Çiydem, Engitek Ltd.

Topic: “Mobile Base Station Communication Antennas”

Location: Middle East Technical University, Ankara, Turkey

Abstract: Mobile communication systems have penetrated into every aspects of people’s lifes from defense, security, healtcare, agriculture, transportation, big data and printed and social media etc.  Increasing need for higher and higher data rates put immense demand on channel capacity, bandwidth and QoS resulting in new methods and technologies. This talk discusses the basic principles, evolution of cellular communication technologies and current trends towards 5G. Talk also focuses on base station antenna technologies starting from the early prototypes  to advanced antennas such as smart, MIMO antennas and massive MIMO antennas of 5G.

Bio: Mehmet Ciydem was born in 1971 in Ankara, Turkey.  He received his B.Sc., M.Sc. and Ph.D. degrees all in electrical engineering from Middle East Technical University (METU), Ankara, Turkey with high honors. After working in defense industry (Aselsan, Havelsan, TAI) for many years, he founded Engitek Ltd company in 2009 where he is president. He is an associate professor of electromagnetic theory and communications lecturing occasionally in several universities (Bilkent Univ., Gazi Univ., Karatay Univ., Hacettepe Univ., and Army War Academy). His research interests are in the areas of electromagnetics, wave propagation, antennas, RF/microwave engineering, radar and communication systems.


17 March 2017 (15:00):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.4)

Speaker: Asst. Prof. Hüseyin Arda Ülkü, Gebze Technical University

Topic: “Quantum Corrected Plasmonic Field Analysis using Time Domain Surface Integral Equation Solvers

Location: Middle East Technical University, Ankara, Turkey

Abstract: When two structures are within sub-nanometer distance of each other, quantum tunneling effect becomes relevant. These effects cannot be accurately modeled by classical electromagnetic solvers. In this study, an auxiliary tunnel that connects the structures is introduced to model the quantum tunneling effect. The quantum model of the tunnel is obtained using density functional theory (DFT) computations, which account for the atomic structure of materials. The plasmonic fields on the resulting connected structure are analyzed using a time domain surface integral equation solver. Time domain samples of the dispersive medium Green function and the dielectric permittivities are computed from the analytical inverse Fourier transform applied to the rational function representation of their frequency domain samples. Numerical results, which demonstrate the effect of the quantum correction on the transient electromagnetic interactions, will be presented.

Bio: Hüseyin Arda Ülkü received the B.S., M.S., and Ph.D. degrees in Electronics Engineering from Gebze Technical University (GTU), Kocaeli, Turkey, in 2006, 2008, and 2011, respectively. Between 2007 and 2016, he was a Research and Teaching Assistant with the Electromagnetic Fields and Microwave Division, Department of Electronics Engineering, GTU, where he is an Assistant Professor since 2016. Between 2011 and 2015, he was a Postdoctoral Fellow with the Division of Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. His research interests include the field of computational electromagnetics with a focus on time-domain integral equations.


10 March 2017 (15:00):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.3)

Speaker: Prof. Gökhan Çınar, Eskişehir Osmangazi University

Topic: “Wiener-Hopf Analysis of Baltic HVDC Submarine Power Cable Measurement”

Location: Middle East Technical University, Ankara, Turkey

Abstract: In this talk, the Wiener-Hopf analysis of TEM wave reflection along a coaxial waveguide with a step discontinuity on the outer wall will be presented. The proposed geometry is a basic model of the Baltic HVDC submarine power cable measurement, which was done recently in Sweden. The analysis is carried out rigorously by applying direct Fourier transform and reducing the problem into the solution of a modified Wiener-Hopf equation of the second type. The solution for the field terms are determined in terms of infinite number of unknown coefficients which satisfy an infinite set of linear algebraic equations. These unknown coefficients are solved numerically and the effect of area ratio on the reflection coefficient is determined.

Bio: Gökhan Çınar received BS and MS degrees in electronics and telecommunication engineering from Istanbul Technical University in 1998 and 2001, respectively. He received his Ph.D. degree in electronics engineering from Gebze Institute of Technology in 2004. He held the assistant and associate professorship positions at Gebze Institute of Technology between 2004 and 2015. He started working at Electrical and Electronics Engineering department of Eskişehir Osmangazi University in 2015 where he was entitled as a full professor in 2016. He was with the Linnaeus University, Sweden between September 2009 and December 2010 as a visiting research for a collaboration, which is still going on, on electromagnetic modeling of submarine power cables and flow acoustics. His research interests include mathematical modeling in general and rigorous methods applied to electromagnetic and acoustic scattering problems, such as Wiener-Hopf and mode-matching techniques.

3 March 2017 (15:00):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.2)

Speaker: Prof. Ayhan Altıntaş, Bilkent University

Topic: “Design and Implementation of an Electromagnetic Wireless Passive Structural Health Monitoring System”

Location: Middle East Technical University, Ankara, Turkey

Abstract: Structural health monitoring (SHM) is an area which aims to ensure prevention or detection of damage in structures and protection of human life via observation of certain damage indicators. In SHM, one of the most important damage indicators is the strain forming on the steel reinforcing bars (rebars) embedded inside the concrete. This strain can slowly develop over time, or, can suddenly occur due to an overload such as an earthquake. In this study, a novel wireless passive sensing system is presented for detecting and measuring the level of strain and relative displacement in structures.

Bio: Prof. Ayhan Altıntaş received BS and MS degrees from Middle East Technical University, Ankara, Turkey, and Ph.D. degree from Ohio State University, all in electrical engineering, in 1979, 1981, and 1986, respectively. He is a professor of  Electrical and Electronics Engineering and is the director of Communication and Spectrum Management Research Center (ISYAM) at Bilkent University. He is the recipient of IEEE Third Millennium Medal 2000, Alexander von Humboldt Research Fellowship 1998, TÜBİTAK (Scientific and Technical Research Council of Turkey) Research Award 1996. At present, he is the President of URSI National Committee. Dr. Altıntaş’s research interests are in electromagnetics, antennas and propagation.


24 February 2017 (13:40):  IEEE AP/MTT/EMC/ED Turkey 2017 Seminar Series (S.1)

Speaker: Assoc. Prof. Fatih Dikmen, Gebze Technical University

Topic: “Construction of Efficient Wave Scattering Algorithms in 2D with Integral Equation Formulations”

Location: Middle East Technical University, Ankara, Turkey

Abstract: Boundary integral equations emerging for solutions of homogeneous Helmholtz equation under Dirichlet and Neumann boundary conditions will be under consideration. They model 2D monochromatic electromagnetic wave scattering phenomena, polarization of which are classified according to the transverse 2D plane as TM and TE. The scatterer is a perfectly conducting obstacle with smooth boundary, and excited by incident electromagnetic waves of the mentioned polarizations above, which are considered in both EFIE and MFIE. The issues and notions for implementation of an efficient algorithm to obtain the solution with high accuracy and with guaranteed convergence will be discussed.

Bio: Assoc. Prof. Fatih Dikmen is currently holding his tenure position in Gebze Technical University, Electronics Engineering Department, after his entitlement for the degree in October 2015.  He earned the bachelor of science degree from İstanbul Technical University, Electrical Engineering Department, in 1993.  He was graduated from the institution that he is working for now, but as a research assistant and with the name then, Gebze Institute of Technology, Electronics Engineering Department, as master of science in 1998 and as a PhD in 2004.  In the next 18 months, he participated at Bilkent University, Computational Electromagnetics Research Group as a postdoc researcher before starting his lecturer career back in Gebze in 2006, which lasted till 2016 before earning his current position.  His research interests and objectives are directed to semi-analytical methods, as well as direct numerical methods in computational electromagnetics.  The talk is a review of his current research supported by TUBİTAK 3001 project grant which he is a director of and is a collaborative work with CEMMETU, under supervision of its director Assoc. Prof. Özgür Ergül.  He likes to name his newborn research group as LABNUANCE (Laboratory for Numerical and Analytical Computations in Electromagnetics).



06 October 2017:  IEEE-MTT Distinguished Lecturer Seminar by Prof. Herbert Zirath

This seminar is postponed to a later date.

Topic: “Design of Millimeterwave Multifunction Integrated Circuits for Data Communication and Remote Sensing Applications” 

Location:  Middle East Technical University, Ankara, Turkey

Funder:  IEEE Microwave Theory and Techniques Society